



UPDATED 11/22/2004

14.40 – 15.35GHz 3-Watt Internally Matched Power FET

FEATURES

- 14.40-15.35 GHz Bandwidth
- Input/Output Impedance Matched to 50 Ohms
- +34.5 dBm Output Power at 1dB Compression
- 6.0 dB Power Gain at 1dB Compression
- 25% Power Added Efficiency
- -42 dBc IM3 at Po = 23.5 dBm SCL
- Hermetic Metal Flange Package
- 100% Tested for DC, RF, and R_{TH}

ELECTRICAL CHARACTERISTICS (T_a = 25°C)

Caution! ESD sensitive device.

SYMBOL	PARAMETERS/TEST CONDITIONS ¹	MIN	TYP	MAX	UNITS
P _{1dB}	Output Power at 1dB Compression f = 14.40-15.35GHz V_{DS} = 10 V, $I_{DSQ} \approx 800$ mA	33.5	34.5		dBm
G _{1dB}	Gain at 1dB Compression $f = 14.40-15.35GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 800\text{mA}$	5.0	6.0		dB
ΔG	Gain Flatness $f = 14.40-15.35GHz$ $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 800\text{mA}$			±0.6	dB
PAE	Power Added Efficiency at 1dB Compression $V_{DS} = 10 \text{ V}, I_{DSQ} \approx 800 \text{mA}$ f = 14.40-15.35GHz		25		%
Id _{1dB}	Drain Current at 1dB Compression f = 14.40-15.35GHz		900	1100	mA
IM3	Output 3rd Order Intermodulation Distortion Δf = 10 MHz 2-Tone Test; Pout = 23.5 dBm S.C.L ² V_{DS} = 10 V, I_{DSQ} ≈ 65% IDSS f = 15.35GHz	-38	-42*		dBc
I _{DSS}	Saturated Drain Current $V_{DS} = 3 \text{ V}, V_{GS} = 0 \text{ V}$		1400	1800	mA
V_P	Pinch-off Voltage $V_{DS} = 3 \text{ V}, I_{DS} = 15 \text{ mA}$		-2.5	-4.0	V
R _{TH}	Thermal Resistance ³		8.0	9.0	°C/W

Notes:

ABSOLUTE MAXIMUM RATINGS FOR CONTINUOUS OPERATION^{1,2}

SYMBOL	CHARACTERISTIC	VALUE	
V_{DS}	Drain to Source Voltage	10 V	
V_{GS}	Gate to Source Voltage	-4.5 V	
I _{DS}	Drain Current	IDSS	
I_{GSF}	Forward Gate Current	30 mA	
P_{IN}	Input Power	@ 3dB compression	
P_{T}	Total Power Dissipation	14 W	
T _{CH}	Channel Temperature	150°C	
T_{STG}	Storage Temperature	-65/+150°C	

Notes:

1. Operating the device beyond any of the above ratings may result in permanent damage or reduction of MTTF.

Tested with 100 Ohm gate resistor.
S.C.L. = Single Carrier Level.
Overall Rth depends on case mounting.
These devices are available screened for IM3 performance. Please contact factory with your requirement.

^{2.} Bias conditions must also satisfy the following equation $P_T < (T_{CH} - T_{PKG})/R_{TH}$; where $T_{PKG} =$ temperature of package, and $P_T = (V_{DS} * I_{DS}) - (P_{OUT} - P_{IN})$.